| Week | Topics | Study Materials | Materials |
| 1 |
Makine Öğrenmesine Giriş
|
|
Introduction to Machine Learning
|
| 2 |
Denetimli ve Denetimsiz Öğrenmenin Karşılaştırılması
|
|
Supervised vs. Unsupervised Learning
|
| 3 |
Veri Ön İşleme ve Özellik Mühendisliği
|
|
Data Preprocessing and Feature Engineering
|
| 4 |
Linear Regression and Business Applications
|
|
|
| 5 |
Classification Algorithms: Logistic Regression, k-NN
|
|
|
| 6 |
Decision Trees and Random Forests
|
|
|
| 7 |
Sinir Ağları ve Derin Öğrenmeye Giriş
|
|
|
| 8 |
Midterm Exam / Project Proposal
|
|
|
| 9 |
Unsupervised Learning: Clustering Algorithms
|
|
|
| 10 |
Dimensionality Reduction: PCA, t-SNE
|
|
|
| 11 |
Model Evaluation and Cross-Validation
|
|
|
| 12 |
Overfitting, Bias-Variance Tradeoff
|
|
|
| 13 |
Big Data and Machine Learning in Economics
|
|
|
| 14 |
Student Presentations & Feedback
|
|
|